
Numerical Flow Visualization

in a Functional Style

Jeff P.M. Hultquist

Report RNR-89-008

NAS Systems Division
NASA Ames Research Center

Mail Stop 258-5

Moffett Field, CA 94035

June 12, 1989



Abstract

Most visualization tools support the creation of polygonal models

which represent a portion of the raw data. These tools support only a

limited set of ad hoc models, and the creation of new models requires the

writing of additional software. We suggest a new approach which treats

all model types as functional mappings of data points. This approach

simplifies the implementation of traditional models and encourages the

development of new models.
We adopt a method loosely based on functional programming. The

numerical data is mapped from one form to another, and the mapping

functions themselves can be operated upon by "recta-operators" to pro-

duce new functions. This functional style can be carried further into the

realm of mapping data values onto corresponding geometric representa-

tions, which we call "symbols."
We describe an interactive environment, currently under development,

which uses a functional paradigm and discrete symbols to display fluid flow

data. Example images made with this environment are shown.



1 BACKGROUND

Flow visualization has its roots in the methods used to trace the flows in wind

tunnels (amply illustrated in IVan Dyke 1982]). As numerical simulations have
become more accurate, a new set of numerical flow visualization techniques have

been developed. We examine the state of this art.

1.1 Fluid flow simulation

The phenomenon to be studied exists in the "physical" space of everyday life,

represented by a grid of sample points. Whereas physical space can be measured

in meters along some coordinate axes, the "computational space" is indexed

by the integer address of each array location. These points are topologically

connected as an orthogonal mesh, but their placement generally follows the
curved contours of a solid surface, usually an airfoil. Sample points are often

arranged more tightly in regions of computational sensitivity.

The partial differential equations which govern the behavior of fluids are

solved using finite-difference techniques over the grid. These computations are

performed until the entire grid has converged to a stable set of values. This "flow
solution" records the state of a simulated fluid flow as a set of sample points

on the curvilinear computational grid. For steady (time-invariant) compressible

flows, each grid point records its physical location and the local measures of

momentum, density, and energy.
The data points in the grid, together with some interpolation function, define

a set of continuous fields. Algebraic and differential functions of these fields

define dependent fields of scalar, vector, and general tensor order, defined over

the same spatial (and perhaps temporal) domain.



1.2 The visualization process

Thisnumerical data must be presented to a human observer. The most faithful

representation is a listing of nil the numerical values in the grid, each printed

to its full significance. If, for example, the data of interest consisted solely of

the total pressure on the wing, such a format would be appropriate. For more

data, a graphical format is required.
A common approach uses sets of polygons in object space. These "abstract

visualization objects" [Haber 1988] or "models" are visible representations of

the simulation data. Each point on the model has a number of surface charac-

teristics, such as hue, lightness, texture, and transparency. These parameters

can be used to represent additional values in the data.

"Volumetric rendering" is an attempt to avoid the intermediate step of model

construction. Instead, a single scalar field is rendered as a mass of varying
translucency, hue, or intensity. Such images can provide a better grasp of scalar

field data, but cannot represent fields of higher order.

1.3 Current visualization tools

At NASA-Ames, the current arsenal of analysis and presentation tools provide a

Cartesian product of supported geometric models and flow quantities. The user

selects the model type to be used and the field to be displayed, and the software

produces either an image or a model to be rendered using other software.

One of these tools, PLOT3d [Buning 1985], can construct contour surfaces,

line plots, vector plots, and several other models. Any one of about fifty different
scalar fields or six vector functions can be depicted. PLOT3d can also integrate

"particle paths" through either the velocity or vorticity fields.

Particle paths are very useful but rather time-consuming to compute, so a
new tool was written for this application. RIP [Rogers 1987] allows the user to

interactively select starting locations for paths on an IRIS workstation. These

locations are the seed points for the path integration, which is computed re-

motely on a Cray supercomputer. This tight linkage of compute power and

graphics power allows interactive exploration of the velocity field.

Many useful images have been made with these tools, but their expressive

power is limited. They support a fixed set of models over a fixed set of fields and

nothing more. The need for more flexible tools is attested to by a proliferation

of privately modified versions of PLOT3d.

1.4 New requirements

The goal of this work is to create an interactive environment that enables users

to create a wide variety of visualization models.
It should be possible to add new features easily, without the need to rebuild

the system from the operating system level.



The system must create color raster images quickly and easily. It must also

support the creation of black and white line plots, since this is still the dominant

mode of graphics published in scientific journals.

The system should encourage the development of methods for the depiction

of several field quantities in a single image.

2 SYMBOLS

The use of discrete symbols as the primitive visual element allows us to support

a wide range of visualization techniques. They offer a number of advantages

over more traditional models. Symbols can be combined as building blocks to

create a wide variety of useful visualization models.

2.1 Definition and related work

We will define a symbol to be a graphical representation of numerical data. The

position and features of each symbol are the functional result of the underlying

data values. Symbols are typically small enough so that several dozen can be

displayed in a single image. A collection of symbols can be viewed together to

obtain an understanding of the structure of the data.

An early use of symbols is described by Chernoff [1973], who presented
collections of human caricatures arranged in two-dimensional scatterplots. Each

face represented a k-dimensional sample, with two dimensions encoded in the
position of the symbol on the page, and others encoded by the size of the

eyes, the length of the nose, and so forth. Detecting trends within the data is

transformed into looking for similarities among a crowd of faces.
Similar work has been done by Ellson and Cox [1988] to display the results

of a finite-element simulation of an injection molding process. In this animation,

the length, hue, and shading of a collection of arrowheads is used to depict the

velocity and temperature of the molten plastic.
The VIEW system being developed at UNC-Chapel Hill depicts protein

molecules by mapping measures such as atomic radius and charge onto the

visual parameters of various geometric primitives.
The efforts of these researchers have demonstrated that multi-dimensional

data can be efficiently displayed using discrete symbols which encode informa-

tion in the position and characteristics of each symbol.

2.2 Selectivity and quantity

In The Semzology of Graphics, Jacques Bertin [1983] explored the use of symbols

to convey information in two-dimensional graphs. He observes that a symbol

has a position on the page and a number of "retinal variables," such as color,



size, and shape. His examples show discrete data points plotted as symbols on
two-dimensional graphs, with other data represented via the retinal variables.

Each variable, be it planar or retinal, carries with it a set of attributes or

"levels." One level is "selectivity," which describes whether an observer can

disregard all but a subset of the symbols along that dimension. Bertin claims,

and demonstrates with examples, that symbols of differing shape tend to blend

together, while (for normally-sighted observers) symbols of different hue can be

regarded in distinct groups.
A test for selectivity is based on the the colored figure tests used to detect

color blindness. In such tests, a field of randomly sized dots is shown to a

subject. Each dot has a color and the observer is asked to identify a figure"

defined by dots of a uniform color. Since color is a selective variable, most

people can see the figure embedded in the dots. We can test the other retinal
variables in a similar manner. Bertin asserts that hue, lightness, and orientation

are selective; saturation, shape, and size are not.
Another of Bertin's levels is that of "quantity," that is, whether different

values of that carrier have some intuitive ordering. Bertin claims that that size,

saturation, and lightness are quantitative, while hue, shape, and orientation are
not.

The appropriateness of each feature mapping should be judged with respect

to the inherent qualities of each feature. Scalar data values should be encoded

by quantitative carriers, whereas a selective carrier can be used to depict distinct

values or levels within a range of options.

2.3 The representation of depth

High performance workstations can depict three-dimensional structure through
the use of object animation. But for more complex objects, which cannot be

rendered in real time, and for images which must appear in print, other methods

for the depiction of depth must be used.
Of course, stereoscopic methods have been used to depict three-dimensional

data; chemistry journals often contain such stereo pair images. In this applica-

tion, discrete symbols have an advantage over other models, as they have more

details to help the viewer to fuse the stereo pairs.
Object depth can be conveyed by a quantitative carrier on each symbol.

Such "local" depth cues can be useful but they carry few bits of information;

therefore, the depth of any particular symbol may be difficult to judge. Such

carriers might be better used for the depiction of flow data.

Since many aerodynamic simulations assume symmetric physical behavior,
we can draw the symbols twice, mirrored about the plane of symmetry. The

"second view," provided by the reflected symbols, can remove the ambiguity of

a fiat image.
As an alternative method, the shadows cast by an object can help the ob-

server to make sense of a scene. The position of the symbol in object space is



mapped into the planar variable of position on the lower surface. Since discrete

symbols cast discrete shadows, the shadows of a group of symbols carry much
more information than does the single large shadow of a traditional model.

2.4 Other advantages of using symbols

Symbols can be designed with numerous carriers, including color, size, shape,
and orientation. Different symbol types can be combined in a single image to

reveal the interaction of different fields.

The collective appearance of symbols can be used to carry information. For

instance, the temperature of a fluid can be conveyed by the relative distance

between neighboring symbols.
Symbols can be used in concert to construct the traditional models. These

larger models, such as contour surfaces, cover most of the image space and only
the nearest surface is visible. Translucent rendering of each surface can help, but

then each surface becomes harder to visually interpret [Wu 1988]. Symbols can

be placed with intervening gaps, which allow symbols throughout the volume
to be seen.

The use of symbols for the visualization of data adapts well to a functional

programming style. Numerical simulation data can be mapped (possibly in par-

allel) onto geometric counterparts, under mapping functions which can them-
selves be modified.

2.5 Design issues

When designing images with symbols, we must consider three separate ques-
tions. We will consider each, in turn, in the remaining sections of this paper.

Our data defines a continuous field, so we must identify the locations within

that domain at which sample values will be depicted. The work mentioned ear-

lier did not have to consider this problem, even the injection molding depiction

used a symbol for eve_ finite element. The large number of data points used

in aerodynamic simulations precludes such an approach.
We must consider how each sample point will be depicted. This requires us

to identify which field values are of interest to the researchers, and how to map

each of these values to non-conflicting "graphical degrees of freedom."

Finally, we need to consider how different visualizations can be created

within the framework of a single interactive environment. The "input language"

supported by the user interface, via keystrokes and mouse operations, must be

natural and expressive.

7



3 MAPPING OF DATA SAMPLES

The raw data from a numerical simulation is overwhelmingly large. A subset

of the original data must be identified to serve as a representation of the entire
dataset. We can view the original data as a set of arrays, each defining a

single field. Mapping operations can take any subset of these fields and produce
new data of the same or lower dimension. Such mappings can be composed to

produce such representative data.

3.1 Creating new fields

The simplest class of mapping includes those which apply some algebraic func-
tion to known quantities at each data point. For example, we can divide the

momentum by the density to derive the velocity of the fluid at each data point.

The velocity can then be reduced to its magnitude to produce a new scalar field.

Rather than using strictly local functions, we can use a template to compute

finite difference approximations of differential fields. In such a fashion, we can

approximate the gradient of the pressure or the curl of the velocity.

3.2 Filtering data points

Some of the mapping methods simply select a subset of the original data. An

example of this would be the creation of a "slice" out of a three-dimensional

dataset, giving us a new two-dimensional grid of flow data. Such a filter can
also allow us to select the data points on the surface of the airfoil.

We can test each grid point against some predicate, creating a Boolean array

of the same dimension as the input. This "mask" can be used in further function

applications to suppress the processing of portions of the data.

3.3 Generating new points

Rather than operating with the sample points originally recorded in the data,
we can instead create new points which are interpolated between the points in

the original data. The most familiar of such functions is the integration of a

path through some vector field from an initial seed point. If that field is the

velocity, the resulting list of points is a particle path.
Another example of interpolated data is a collection of points at some iso-

valued level in a scalar field. A polygonal tiling of a grid of such points yields

the familiar contour surface model.

4 MAPPING TO SYMBOLS

Once the representative points have been selected, they must be converted into

a graphical construct for presentation to the user. We will again adopt a style



of function application over sets of data, but now the result of each mapping is

a set of graphical primitives.

4.1 Spatial mapping

Each geometric primitive has a number of vertices in object space. Each vertex
must be defined as the result of some function applied to the data. The function

may be strictly local and map a data point onto a symbol solely determined by
the values at that point. Alternatively, a template may be used, as in the case of

a filter that converts a sequence of points to a sequence of linking line segments.

Most visualizations are constructed by mapping the spatial dimensions of

physical space directly onto the spatial dimensions of object space. If the data
are also time-variant, this fourth dimension is typically mapped onto the elaps-

ing time of an animated sequence. (Such an approach can mimic empirical flow

visualization methods.)

The mapping of dimensions need not follow this pattern. A surface plot of
a function of two variables maps the dependent function value into the third

spatial dimension of object space. A vector plot is the result of mapping each

data point to a line segment, with one endpoint being a function of the data

position, and the other endpoint one of both position and velocity.

4.2 Feature mapping

Each geometric primitive is associated with a number of surface characteristics,

including color, shininess, and transluscency. These additional degrees of free-
dom can be determined as the functional result of values in the data. The use

of local and template functions can be applied just as in spatial mappings with

the result applied to any characteristic supported by the rendering and output

systems.
For convenience, the color of new primitives should probably be set to some

user-controlled default value. The color of any given primitive could then be

allowed to take the default value, specified explicitly at the time the primitive

is created, or altered by mapping a set of primitives through yet another filter.
Note that these characteristics do not carry as much information as do the

spatial variables. Information which is clearly visible on a display may be ob-

scured in a hard-copy version of the same image. Furthermore, since some

people are color blind, it is unwise to depend on color for the presentation of
results.

5 AN EXAMPLE IMPLEMENTATION

An environment is being built at NASA-Ames which supports the visualization

of fluid flow data using a functional approach. It is called PROVE, an acronym



for "Programmable Visualization Environment." This environment has been

designed to be as extensible as possible, so that new visualization techniques can
be created within its framework. The system is expected to evolve in response

to the needs of the user community.

5.1 Overview

The system isbeing builtwith the language Scheme, a concisedialectofLISP.

The interactivenature of Scheme allowsus to add new featuresto a running

environment, and to load entiremodules on demand. Scheme automatically

garbage collectsdata which isno longerin use,relievingthe programmer from

the task ofmanaging freestorage.

PROVE runs on SiliconGraphics IRIS-4 workstations,under ForeSight,the

standard window manager. In itsinitialconfiguration,the system presents a

textwindow running the GNU Emacs texteditor.The Scheme interpreterruns

as a subprocess under the editorand has been extended to have accessto most

of the functionsin the IRIS graphicslibrary.Everything that appears on the

screenisplaced there by the Scheme interpreter.

The environment containsa number of modules which support management

of simulationdata, vectoralgebra,mapping functions,and an ever-increasing

setoffeatures.At present,almost alluserinteractionwith the system istextual.

As usefulfeaturesare developed,they willbe made availableas menu options.

We hope that over the next few yearsa largecollectionofgraphics toolswillbe

developed to run under PROVE.

In Scheme, the "list"isthe most common data structure.The function map

can produce a new listby applying a functionover the corresponding elements

of a number of listsof equal length.For example, the expression

(map + '(10 12 14) '(1 2 3))

evaluates to the new list '(11 14 17). In PROVE, we have implemented a

new data structure called a "grid" which represents a n-dimensional array of

values. The function map-g_:id takes a function, an input template, and a
number of isomorphic grids. It produces a new grid which contains the results

of the function and template applied at each base location in the original grids.

(Output values for which the input template exceeds the grid boundaries are
marked as "undefined," and the result of any function which has undefined

inputs is also "undefined.")
In the remainder of this section, we present a number of images created with

PROVE. The data are from a simulation of flow over a delta wing. They were

provided by John Ekaterinaris, a researcher at NASA-Ames.

10



5.2 Density plot

In the firstexample, we constructa linedrawing which depictsthe fluiddensity

contours on the upper surfaceofthe airfoil(plate1).This isa simple example

meant to illustratethe use offunctionalmappings inthe generationofan image.

We also wish to emphasize that scientificjournalsrarelycontainanything but

lineartsuch as this,sovisualizationtoolsshould be abletoproduce such output.

We firstselectthe data points across the upper surface. This new two-

dimensional gridisexamined to findthe extreme values,and thisrange issub-
divided into a number of levels.Each cell,defined by an input template, is

processed by a contouring filterto createa set of linesegments. The edges of.

each cellarealsoconverted tolinesegments toproduce the underlyinggridlines.

All ofthesesegments are mapped to the image plane and saved as a PostScript

file.The numerical labelsalong the right-hand edge are placed by running a

contour filteron that edge.

5.3 Ribbons

A common model is created by integrating a set of starting points to create

particle paths through the velocity field. We select a set of points along the

leading edge of the airfoil, and integrate these through the velocity fields. This

produces a set of one-dimensional arrays of data points. We carl map each pair

of adjacent points to a line segment and produce the traditional particle path

visualization model (plate 2).
If we select pairs of paths and tile the gap between them, we create ribbons

which twist downwind from the airfoil. (Such ribbons were used by Belie [1985]

to depict flow in the main engines of the space shuttle.) We can assign color to

these polygons, alternating the color as we proceed down the list. This yields

a "dashed" ribbon (plate 3), which conveys information about the velocity and

the divergence of the flow.

5.4 Combination image

We have seen how an image of particle paths can be made more useful by

mapping the sample points onto sequences of polygons. This approach is used

in the design of a final image which depicts a number of quantities.
We first select all those points at which the density has a value less than

92% of the standard value. Those points which survive this winnowing are

mapped onto red points in the object space. Grid points at which the velocity
has a component back toward the nose of the airfoil are marked, and those that

can be matched with orthogonal neighbors become the endpoints of black line

segments. Finally, slices orthogonal to the airfoil are selected. Each slice is
processed by the contouring filter from the first example, this time to create

contour lines at which the "stagnation energy per unit volume" has a value of

11



1.7. These contour lines are added to the growing collection of primitives to

be rendered. Plate 4 shows all of these models, mapped into object space and

rendered with drop shadows.

6 CONCLUSION

The constructionof models in object space isa popular method of visualizing

data. These models are oftenconstructed by softwarespecificto each model.

By adopting the methods of functionalprogramming, we are able to createa

wide varietyofmodels usingsequences ofvery simple functions.

By emphasizing the creation of discretesymbols as the functionalresult

of collectionsof data points,we encourage the development of new models.

Furthermore, symbols which are placed individuallyin object space can carry

more information than ispossiblewith more traditionalmodels.

The PROVE software is a flexible base from which to develop new visual-

ization techniques. We now need to identify the most useful of these and make

them widely available to the scientific community.

12



7 ACKNOWLEDGEMENTS

Mary Hultqnist edited this paper and caught many errors. Dave Kerlick and
Creon Levitt made suggestions that lead to some of the nicer features of this

work. Fred Brooks and Henry Fuchs made the first suggestion that a mathe-

matical structure for visualization was worth investigating. John Ekaterinaris

graciously allowed the use of his numerical flow data. Lakshmi Dasari explained
how this work relates to real functional programming.

8 BIBLIOGRAPHY

Belie, R.G. [1985] Flow Visualization in the Space Shuttle's Main Engine,

Mechanical Engineering, (September), 27-33.

Bertin, J. [1983] The Semiology of Graphics. (translated by W. Berg),

Madison: University of Wisconsin Press.

Buning, P.G. and Steger, J.L. [1985] Graphics and Flow Visualization in

Computational Fluid Dynamics. In Proceedings of the AIAA 7th CFD

Conference (Cincinnati, July). AIAA# 85-1507-CP.

Chernoff, H. [1973], The Use of Faces to Represent Points in k-Dimensional

Space Graphically. Journal Amer. Statistical Assoc., 68 (June), 361-368.
Ellson, R. and Cox, D. [1988] Visualization of Injection Molding. Simulation.

51, 5 (Nov. 1988), 184-188.
I-Iaber, R.B. [1988] Visualization in Engineering Mechanics: Techniques,

Systems, and Issues. In course notes for Visualization Techniques in the

Physical Sciences (#19), SigGraph, (Atlanta, August 1-5).

Rogers, S.E., Buning, P.G., and Merrit, F.J. [1987] Distributed Interactive

Graphics Applications in Computational Fluid Dynamics. International

Journal of Supercomputer Applications. 1, 4 (Winter 1987), 96-105.

Van Dyke, M. [1982] An Album of Fluid Motion. Stanford: The Parabolic
Press.

Wu, K. and Hesselink, L. [1988] Computer display of reconstructed 3-d scalar

data. Applied Optics. 27, 2 (15 Jan. 1988), 395-404.

13



0.98

0.96

density contours

0.94

(ijk) = (0..39, 0..30, 1)

data: John Ekaterinaris

image: Jeff Hultquist

0.92

0.90

0.88

plate 1



plate 2



plate 3



plate 4


